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A

Numerical calculations are performed for the problem of penetration into a vortex core 
of a blade travclling normal to the vortex axis, where the plane formed by the blade 
span and the direction of blade motion coincides with the normal plane of the vortex 
axis at the point of penetration. The calculations are based on a computational 
method, applicable for unsteady three-dimensional flow past immersed bodies, in 
which a collocation solution of the vorticity transport equation is obtained on a set of 
Lagrangian control points. Differences between this method and other Lagrangian 
vorticity-based methods in the literature are discussed. Lagrangian methods of this 
type are particularly attractive for problems of unsteady vortex-body interaction, since 
control points need only be placed on the surface of the body and in regions of the flow 
with non-negligible vorticity magnitude. The computations for normal blade-vortex 
interaction (BVI) are performed for an inviscid fluid and focus on the relationship 
between the vortex core deformation due to penetration of the blade into the vortex 
ambient position and the resulting unsteady pressure field and unsteady force acting on 
the blade. Computations for cases with different vortex circulations are performed, and 
the accuracy of an approximate formulation using rapid distortion theory is assessed 
by comparison with the full computational results for unsteady blade force. The force 
generated from blade penetration into the vortex ambient position is found to be of a 
comparable magnitude to various other types of unsteady BVI forces, such as that due 
to cutting of the vortex axial flow. 

1. Introduction 
The current paper is concerned with the vorticity response and unsteady blade forces 

which occur as a blade moves through the ambient position occupied by a vortex core 
in an inviscid fluid, where the plane formed by the blade span and the direction of blade 
forward velocity coincides with the normal plane of the vortex axis. We will henceforth 
refer to the blade-vortex interaction in this geometry as normal BVI,  and say that the 
blade penetrates into the vortex core, it being understood that the vortex will deform 
about the blade and the vortex lines will not be severed by the blade in an inviscid fluid. 
Normal BVI occurs in a number of rotorcraft aerodynamical problems, such as 
interaction of trailing tip vortices from a helicopter main rotor blade with the tail 
section or with blades from the tail rotor and entrainment of atmospheric turbulence 
or shed vortices into helicopter rotors. Other applications include interaction between 
ship propellers and coherent structures in the ship boundary layer and ingestion of 
atmospheric turbulence into jet engine fans. 

When normal BVI does occur, it may emit an impulsive noise which sometimes 
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dominates the sound generation of the device (see, for example, a study of noise 
generation from Lynx helicopters by Leverton, Pollard & Wills 1977). Theoretical 
models of the sound generation by normal BVI have been developed by Amiet (1986), 
Amiet, Simonich & Schlinker (1990) and Howe (1988, 1989). These studies typically 
either prescribe the vortex response to cutting or make other idealizations to simplify 
the analysis. Common idealizations are restriction to circular vortex core cross-section 
and the assumption that the vortex is convected only by the ambient flow about the 
blade. Controlled experimental studies of noise generation by normal BVI have been 
performed by Ahmadi (1986), Cary (1987) and Schlinker & Amiet (1983). Some of 
these studies also report limited flow visualization results (using smoke in a wind 
tunnel); however, the details of the deformation of the vorticity field near the blade 
leading edge are not clear. 

An experimental study of the fluid dynamical aspects of normal BVI was reported 
by Johnston & Sullivan (1992) in which the trailing vortex from a propeller was cut by 
a blade traversed from downstream. The vortex deformation due to cutting by the 
blade was visualized by smoke, and the unsteady pressure field on the blade surface was 
measured. For blades at an angle of attack of 5” or more, the two parts of the vortex 
were shown to undergo spanwise displacements (in opposite directions) after being cut 
by the blade. It was also noted that the presence of axial flow within the core causes 
a thickening of the vortex core on one side of the blade and a thinning on the other side 
following cutting. 

Another experimental study of normal BVI was performed by Weigand (1993) in an 
investigation of the response of a vortex ring to a cut normal to the core axis by a thin 
flat plate. This study was performed in water, and used dye to visualize the vortex and 
particle-image velocimetry to measure the axial flow within the vortex core. Weigand 
observed that cutting of the vortex by the plate causes the formation of a ‘sloshing’ 
type wave on the ring in which the core area varies (nearly) periodically at any given 
point along the vortex axis. Secondary vortices are formed by vortex-induced 
separation of the blade boundary layer, which interact with the primary ring vortex. 
In some such cases, the secondary-primary vortex interaction results in breakup of the 
ring and formation of three individual vortex rings propagating orthogonally to each 
other. 

A recent theoretical and computational study dealing with the problem of cutting of 
a line vortex by a blade at angle of attack OL and with finite thickness T is reported in 
Marshall (1994) and Marshall & Yalamanchili (1994). In Marshall (1994), a general 
long-wave approximation of the theory of vortex filaments with variable core area is 
developed as a simplification of the vortex filament theories of Lundgren & Ashurst 
(1989) and Marshall (1991), which applies to problems where the axial lengthscale L 
of the vortex disturbance is large compared to the core radius. An analytical solution 
of the long-wave theory is obtained in Marshall (1994) for the response of a straight 
vortex (with ambient axial velocity w, and core radius a,) to instantaneous cutting by 
a thin flat plate (with forward speed U relative to the vortex and angle of attack a). The 
solution predicts propagation of a ‘vortex shock’ (over which the core radius changes 
discontinuously) and a ‘vortex expansion wave’ away from the blade on opposite sides 
of the vortex. The subsequent difference in vortex core radius across the blade results 
in an impulsive normal force on the blade surface. 

The possibility of bending of the vortex due to interaction with thick blades is 
investigated in Marshall & Yalamanchili (1994) with numerical computations based on 
the long-wave vortex filament model. The cutting of the vortex by the blade is again 
assumed to occur instantaneously when the blade leading edge penetrates sufficiently 
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far into the vortex core. It is found that the vortex will remain nearly straight during 
passage of the blade for ratios T/ro  of blade thickness to ambient core radius of order 
unity or less; however, for T/cT., greater than about 5 considerable bending of the 
vortex about the blade leading edge is observed to occur. For sufficiently large Z’/go 
values, the vortex bends so much that the blade leading edge never cuts thc vortex, but 
rather the vortex impinges on each side of the blade surface at points somewhat 
downstream of the leading edge. The main results of Marshall ( 1  994) and Marshall & 
Yalamanchili (1994) have also been confirmed experimentally (Krishnamoorthy 1993 ; 
Krishnamoorthy & Marshall 1994). 

In the present paper, the results of a direct numerical computation of the penetration 
of a blade into a vortex core in an inviscid fluid is reported. The neglect of viscous 
effects in these computations can be partially justified via a scaling analysis, for the 
purpose of computing the unsteady blade force, for cases where the maximum 
azimuthal speed induced by the vortex is of the same order as the blade forward speed 
and the blade thickness is of the same order as the vortex core radius. The numerical 
calculations are performed using a collocation solution of the vorticity transport 
equation on a set of convected (or Lagrangian) control points. The method utilizes a 
representation for the vorticity field as a set of overlapping elements, similar to the 
‘vortex blob’ method (e.g. Knio & Ghoniem 1990; Winckelmans & Leonard 1993), 
which converges to the prescribed vorticity field as the number of control points 
becomes large (with fixed element overlap). Most vortex methods in the literature (e.g. 
Anderson & Greengard 1985; Beale & Majda 1982; Leonard 1985) associate some 
constant volume h3 with each control point, where the product h3m, of this volume 
with the vorticity evaluated at the control point is the integral over space of all vorticity 
associated with element n (which we refer to as the element ‘amplitude’ 52,). Since h3 
is constant in time and the evolution of m, is governed by the usual vorticity transport 
equation, this approach is equivalent to writing a transport equation for 52, of a form 
analogous to that for vorticity (as noted by Winckelmans & Leonard 1993). In the 
present collocation method, the element amplitudes are instead obtained by fitting the 
element representation to the vorticity values at the control points, which for N control 
points involves solution of an N x N matrix equation at each time step. We use an 
approximate iterative procedure for solution of this matrix equation, which both 
greatly speeds up the calculation and filters out noise in the solution for element 
amplitudes due to ill-conditioning of the matrix. A method for collocation solution of 
the vorticity transport equation in two dimensions was previously introduced by Beale 
(1986), and later employed by Choquin & Lucquin-Desreux (1988); however, some 
differences exist between our method and that of Beale (1986) in the procedure used to 
fit the element amplitudes (see $2). The Lagrangian collocation method used here has 
also been extended to viscous flows and to flows with background vorticity fields; these 
will be described in a separate paper along with more technical details of the numerical 
analysis. 

A description of the algorithm used for the numerical computation of the vorticity 
evolution is given in $2. Several diagnostic tests of the numerical method are described 
in $ 3 .  Details of the implementation of the numerical method for the normal BVI 
problem are describcd in $4. The results of computations for the deformation of the 
vorticity field in the normal BVI problem during penetration of a blade into a vortex 
are described in $ 5 ,  along with an assessment of the accuracy of the numerical 
calculations. In $6. the unsteady pressure on the blade is calculated using an integral 
equation formulation of the pressure-Poisson equation. The results for unsteady blade 
force are compared for different vortex circulations in $7. The applicability of rapid- 
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distortion theory to the normal BVI problem, which has been used in previous 
treatments of acoustic aspects of the problem, is also evaluated in 345-7 in comparison 
to the results for the full inviscid calculation. 

2. Numerical method 
A method is described in this section for solution of three-dimensional unsteady 

flows which is based on a collocation solution of the vorticity transport equation on 
a set of Nconvected control points. In this method, the evolution of the vorticity vector 
o = V x u is determined from the inviscid vorticity transport equation 

d o  
- = ( o . V ) u ,  
dt 

where d/dt is the material derivative and u is the velocity vector. The velocity field is 
obtained by integration over the vorticity in the Biot-Savart equation 

u(x, t) = u(x, dt.(x’). 

In (3), we define Y = x-x’ and Y = I Y I ,  and let V denote the entire space occupied by 
the fluid and dv(x’) denote an infinitesimal volume element in V, where the integration 
is with respect to the primed position vector x’. The vector u(x, t )  is a potential flow 
field determined by the boundary conditions on u. 

The vorticity vector w can be decomposed as the sum of a divergent vector field, 
which we refer to as the ‘generator’ field q(x, t).  and the gradient of a scalar, such that 

0 = q-va.  (3 )  

As noted both by Novikov (1983) and Winckelmans & Leonard (1993), the gradient 
term in (3) makes no contribution to the induced velocity from (2). The curl of q is 
equal to the curl of a, and the divergence of q is obtained from (3) as 

v .  q = V”. (4) 

Substituting (3) into (2), taking the curl of u, and using some standard vector identities 
and the fact that V’((I/r) = -47cS(~), an expression for the vorticity in terms of q is 
obtained as (see also Winckelmans & Leonard 1993) 

In order to evaluate the integral in ( 2 )  to obtain the velocity field, a representation 
for the generator field in terms of overlapping elements, centred at the control points 
x,(t), II = 1,. .., N ,  is introduced as 

where x is any arbitrary point in V. The vectors Q,( t )  are called the element 
‘amplitudes’ and are equal to the total (integrated) vorticjty associated with each 
element. The scalarsf, are called the element ‘weighting functions’ (not to be confused 
with ‘weight functions’ in finite-element methods) and are normalized such that 
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The weighting functions determine the distribution of vorticity within each element. 
The function Rn(t)  is a lengthscale associated with the element weighting function, 
called the element ' radius '. In general, there may be several lengthscales associated 
with the weighting function, but for the present paper we consider only weighting 
functions with a single radius in the Gaussian form 

Substituting (6) and (8) into the Biot-Savart equation (2) and performing the 
integration, the velocity at any point x in the flow field is obtained as 

where P(a,z) is the incomplete gamma function with limits P = 0 at 3 = 0 and P = I 
as z a. When a = 3/2 and z = 2, for some real variable x, a convenient cxpression 
for P(3/2,  x2) is given in terms of the error function erf (x) as (Abramowitz & Stegun 
1965) 2x e-xz 

P(& x2) = erf (x) -7. 

Substituting (6) and (8) into ( 5 )  gives the vorticity field as 

Since the vorticity in ( 1  1)  is constructed using (5 ) ,  it is divergence-free for any weighting 
functionf,. From (1 1 )  a matrix equation for the element amplitudes 0, can be written 

where O, denotes the values of vorticity at the control points x,, and W,, and A , ,  
are N x  N time-dependent matrices defined by 

The algorithm described above is essentially a means of interpolating the vorticity 
field given its values on a set of irregularly spaced control points, with the integral (2) 
produced by analytically performing the indicated integration on the individual 
interpolating functions. Similar methods can be used generally for interpolation of 
fields specified on irregularly spaced points and for evaluating integrals over these 
fields. Indeed, we will use such a method in performing the volume integration in (24) 
below. 

In the context of a general interpolation formula, we ask that the weighting function 
f, in (6) be of significant magnitude only in a region of scale R and that.f, be doubly 
differentiable. In order that the same fit yield a simple expression for the Biot-Savart 
integral of the quantity, we further ask that the integral (2) be obtainable analytically 
(or nearly so) over the terms of the sum (6). There is a large class of spherically 
symmetric functions that meet these requirements, in addition to the Gaussian used 
here (see, for example, Winckelmans & Leonard 1993). 
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In computing the evolution of the flow, we initially prescribe some vorticity field u, 
solve the matrix equation (12) for the element amplitudes 52, and then solve for the 
velocity at each control point using the sum (9). The potential velocity field u in (9) is 
necessary to enforce the no-penetration boundary condition on the surface of 
immersed bodies and is solved for using a combination of source and vortex sheet panel 
methods (Hess & Smith 1967; IJhlman & Grant 1993). The flow field at the next time 
step is obtained by convecting the control points according to 

-- dxn - u(x,, t )  
dt 

and then solving for the change in vorticity at each control point from (1). The 
stretching term in (1) is obtained in the present study by the centred finite-difference 
approximation 

(0.0) u l X n p  = ~ [u(x, + a Ax) - u(x, - a Ax)], 

where o is the magnitude of w, a = w/w is the direction of w and the increment Ax can 
be made arbitrarily small. We could alternatively have obtained the stretching term by 
taking the gradient of u using the result (9), but the finite-difference approximation (15) 
considerably speeds up the calculation. 

Once u is known at the control points at the new time step, the amplitudes D,, are 
again obtained from (12) and the process is repeated. In the current work, a second- 
order predictor-corrector scheme was used to advance the calculation in time in order 
to ensure stability and second-order accuracy of the numerical method. Letting R 
denote the right-hand side of (1) and an asterisk denote evaluate at the end of the 
predictor step, the predictorxorrect scheme used to advance the solution in time can 

(15) 
w 

2Ax 

be expressed as 
0" -_ = ;(I?; +I?,*), - R,n, At 

k 

At 

where m i  = w(xk, t,) and I?; = R(xk,  tn). 
One difficulty with the algorithm described above is that direct inversion of the 

matrix equation (12) to obtain 0, requires a large amount of computational time when 
large numbers of elements are present. Also, when elements overlap by substantial 
amounts, which is necessary in order to maintain a smooth representation of the 
vorticity field in (1 l), the resulting matrix equation for 0, is ill-conditioned, such that 
an exact solution of (12) for a fairly smooth vorticity field yields 0% values with large 
oscillations between nearby points. Both of these problems can be overcome by using 
an iterative scheme in which 0, is temporarily assumed to remain constant for 
elements with iz in some set Q(m), where m is the index for the control point at which 
the solution is desired, and control points x, with index n in Q(m) lie in some small 
region surrounding xm.  Letting P(m) denote the complement of Q(m), an iteration 
formula for the element amplitude is obtained as 

where q is the iteration index. 
It is noted that the iterative scheme (17) does not converge to an exact solution of 

(12), but instead converges to a smooth fit for the amplitudes 0, with vorticity error 
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at any point of order FV2m, where I is a typical separation distance between 
neighbouring control points. The representation becomes more accurate as the 
resolution of the vorticity field by the element control points improves. Exact iteration 
procedures, such as that of Beale (1986), exhibit the same type of ‘noisy’ behaviour as 
the exact solution of (12) after a sufficient number of iterations. A related discussion 
of the trade-off between accuracy and smoothness in solution of inverse problems is 
given in the book by Press rt al. (1992, pp. 795-799). The approximate iteration 
procedure (17) is similar to the ‘function specification method’ commonly used to 
obtain approximate solutions of the inverse heat conduction problem (Beck, Blackwell 
& St. Clair 1985). Diagnostic tests with this iteration scheme have been performed in 
one dimension using temperature profiles of various forms, in two dimensions with 
vortex patches and in three dimensions with vortex rings.The iteration scheme seems 
to be quite robust and usually converges (with a maximum relative change in Q, of less 
than in 6 1 0  iterations. In two-dimensional tests with vortex patches, the typical 
error in vorticity (normalized by the vorticity magnitude) is found to decrease in 
inverse proportion to the number of control points N ,  which is consistent with the 
vorticity error estimate stated above. Because the iteration converges so quickly, it 
requires a fairly modest proportion of the total computational time. For instance, in 
tests with 2000-4000 elements, the amplitude iteration typically requires 1&20 % of the 
total time, most of the rest being used for determination of the velocity field. If some 
degree of grouping of nearby elements were employed, such as would be done when 
using some type of accelerated algorithm (e.g. Greengard & Rokhlin 1987), the 
amplitude iteration would be significantly faster since the neighbours of each element 
would be known a priori. 

Since the gradient term in ( 5 )  does not directly affect the determination of the 
velocity field in (2), neither does this term directly affect the vorticity solution from (1) 
(since o is directly evolved on the control points). Indeed, the only effect of this term 
is in determination of the element amplitudes in the iteration (17). An alternative 
approach is to simply drop this term, by setting the matrix A,,, in (17) equal to zero. 
and to specify the values of vorticity at the control points such that the representation 
(6) is initially nearly divergence-free. The numerical algorithm can be shown to 
conserve the divergence of vorticity through first order in time step At during the 
subsequent evolution of the flow. In sample runs performed with this alternative 
approach, we have found that the divergence of the vorticity representation remains 
small during the computation provided that it is initially small and that the flow 
remains well resolved. Comparisons of numerous identical calculations using both the 
divergence and divergence-free representations give nearly identical results, even when 
the divergence of the vorticity representation is not small in the former case. 

The Lagrangian vorticity collocation method presented here has all of the advantages 
usually associated with more standard vortex methods. In particular, in contrast to 
finite-difference or pseudo-spectral solutions of the velocity-pressure formulation of 
the Euler equations, Lagrangian vorticity-based methods require control points only 
in the portion of the flow in which a non-neglible vorticity exists (which is typically a 
small part of the flow field). This feature is particularly advantageous in unbounded 
flows, which must always be truncated to a finite domain in methods based on the 
velocity-pressure formulation. Secondly, Lagrangian methods do not exhibit the 
artificial viscosity introduced in treatments of the advection term on fixed grids. 
Thirdly, since we directly obtain the vorticity with error of order E,, say, the error in 
the resultant velocity after integration of vorticity in (2) is of order E, = O(REJ, where 
R is the typical element radius. If L is a typical lengthscale of the flow geometry, then 
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the ratio of velocity error to vorticity error is E,,/LE, = O(R/L)  4 1. The velocity error 
is thus much lcss than it would have been had we used a scheme with similar accuracy 
to directly solve for velocity. 

3. Validation tests for the numerical method 
Prior to considering the normal BVI problem, we present the results of a few 

preliminary calculations to validate various aspects of the numerical method which are 
pertinent to the problem to be considered. In the first test, we calculate the propagation 
velocity of a series of ‘ thin’ vortex rings in order to examine the accuracy of the velocity 
calculation for a given vorticity field. The calculated propagation speeds U are 
compared to the analytical result of Saffman (1 970), 

for vortex rings with a Gaussian cross-section. In the calculations, the ring was formed 
of N elements which are placed along the axis of the vortex. The number of elements 
was adjusted to yield a given value of the ratio C of the element radius to the distance 
between neighbouring elements, called the ‘ overlap ‘. The calculated propagation 
speeds, shown in figure 1, for an overlap of C z 3.0 are found to be within 1 YO of those 
predicted by (18) for R/cr 2 3. For the case with R/rr = 2, the calculated and 
theoretical results differ by 3.5 YO, although in this case the thin ring‘ assumption is not 
well satisfied and the theoretical result (18) would not be expected to be very accurate. 
In order to quantify the error in velocity prediction caused by inadequate resolution of 
the vorticity field, the calculated ring propagation speed is shown in figure 2 with 
different overlap values for a ring with R / a  = 5.  The computed results yield a value of 
dimensionless ring propagation speed of about 0.0474 for overlap values above about 
0.75; however, as the overlap value decreases below about 0.5, the computed 
propagation speed decreases rapidly. 

A second set of tests, which examines the accuracy of the method for prediction of 
vortex-induced forces on immersed bodies, was performed for the problem of the 
induced force due to a vortex ring on a sphere. The vortex ring is located at some 
distance L from the centre of a sphere of radius a, and the ring is oriented such that 
its axis of symmetry passes through the sphere centre. This problem can be solved 
analytically using Helmholtz’s (1858) solution for flow induced by a vortex ring 
together with Butler’s (1953) sphere theorem. The solution is obtained in terms of 
elliptic integrals which are evaluated numerically ; the derivation is given in Appendix 
A. Numerical calculations for this problem were performed using a vortex ring of ring 
radius R = I and core radius a = 0.1, formed from 100 elements placed along the 
vortex axis with an overlap of 1.6. The sphere was simulated using 400 vortex sheet 
panels, using an algorithm similar to that of Hess & Smith (1967). The pressure is 
calculated in both the numerical and analytical cases using the steady Bernoulli 
equation, so that the force on the sphere does not include possible unsteady effects 
associated with movement of the vortex ring. A comparison of the drag coefficient, 
C, = drag/(ipP), for the numerical and analytical results are shown in figure 3 for 
values of the ratio L/a between 0 and 2.0. The difference between the calculated 
and theoretical results is less than 1 % for all cases considered. 

A third test of the numerical algorithm was made to examine how well the algorithm 
approximates the stretching term in the vorticity transport equation. In  this test, we 
consider a vortex ring which is being axisymmetrically stretched by a line source 
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FIGURE I .  Comparison of computed (0) results for dimensionless propagation speed of a vortex ring 

with predicted values (solid curve) from (18), using an overlap value of 3. 
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FIGURE 2. Effect of element overlap on the computed results for dimensionless propagation speed 

of a vortex ring with Rln = 5 .  

located along the central axis of the ring. The ring is discretized by 7000 vorticity 
elements, which are located on 35 circular curves (with 200 control points on each 
curve) that form a torus. The circular curves are arranged such that a diameter of the 
core passes through (or close to) approximately seven control points. The vortex core 
is initially circular, and the vorticity distribution is initially assumed to vary in 
proportion to distance from the ring central axis. The length and velocity scales are 
non-dimensionalized by the initial core radius u and the ratio T / r  of circulation to core 
radius, respectively. The dimensionless ring radius is initially set equal to four, and it 
increases to a mean value of nearly eight by the end of the computation. The 
computation was performed using 164 time steps, during which interval the vortex 
completed nearly two rotations about the core. A plot in figure 4 shows results for 
circulation and the ratio of average vorticity over a cross-section, OJ,,,, to its initial 
value, w,, ,~,  as functions of ring radius, which is defined as the pistance from the ring 
axis to the radial centroid of the core cross-section. Dotted lines shown in the figure 
represent theoretical values. The circulation, which was determined by integrating the 
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FIGURE 4. Comparison of the circulation, r. and the ratio of average vorticity over a cross-section 
to its initial value, cdnJqntt, with theoretical values (dashed lines) for a vortex ring which is stretched 
by the flow due to a line source along the ring axis. The ring radius, defined by the distance from the 
ring axis to the centroid of the vortex core, approximately doubles during the course of the 
calculation. 

tangential component of velocity over a circuit about the core, is observed to vary by 
a maximum of about 6 % from its initial value. The computed value of w ~ ? ~ / w ~ ~ ~ ~  varies 
nearly linearly with ring radius, as predicted by inviscid theory. This test indicates that 
gross properties of the vorticity field are accurately predicted by the collocation 
algorithm even though the spacing between control points grows increasingly 
anisotropic with time. 

4. Numerical implementation for the normal BVI problem 
This section describes the set-up and numerical implementation of the method 

described in $2 for calculations of the normal BVI problem. Throughout the remainder 
of the paper, all length variables are non-dimensionalized by the blade chord c, 

FIGURE 3. Comparison of computed (0) drag coefficient of a sphere due to velocity induced from a 
vortex ring, with R/u = 10, with theoretical result (solid curve) as a function of the dimensionless 
distance L/a  of the ring from the sphere leading edge. 
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FICUKP 5. Perspective view of the initial configuration for the normal BVI computations. showing the 
grid lines on the blade surface and the orientation of the blade and ring with the coordinate axes. The 
leading edge of the blade coincides with the z-axis. 

circulation is non-dimensionalized by the product Uc, where U is the free-stream 
velocity, and time is non-dimensionalized by c / U .  In these calculations, the blade is a 
NACA series 0016 airfoil, with span and chord lengths equal to unity, thickness T = 
0.16 and cosine tip shape. The vortex has the shape of a ring with ring radius R = 0.5 
and nominal core radius cro = 0.1. Three runs are reported, for values of the vortex 
circulation r of 0.2, 0.5 and 1.0. The ring is oriented such that the ring axis is parallel 
to the blade leading edge, as shown in figure 5,  and the free stream carries the ring into 
the blade leading edge. A coordinate system (see figure 5 )  is introduced such that the 
z-direction is along the blade leading edge, the x-direction is along the blade chord and 
the y-direction is normal to the symmetry plane of the blade. The blade is stationary 
and its leading edge is coincident with the line x = y = 0. The centre of the ring is 
initially located at a distance of x = -0.75 upstream of the blade leading edge. Since 
the ring also propagates in the z-direction under its self-induced velocity field, an initial 
spanwise displacement of the ring is introduced such that the blade-vortex collision 
will occur close to the blade centre (z = 0). 

The blade surface is discretized into 900 quadrilateral panels, which are placed closer 
together near the centre of the blade span (where the blade impacts the vortex ring) 
than near the tips. Calculations are performed with both moderate and high resolution 
of the vorticity field within the vortex ring. In the moderate resolution runs, the ring 
is represented by 3500 control points, which are distributed within the ring in a torus 
formed of 35 circular curves with 100 control points along each curve. In the high 
resolution runs, the ring is represented by 10500 control points, which are distributed 
within the ring in a torus formed of 70 circular curves with 150 control points along 
leach curve. The circular curves are arranged in such a way that a diameter of the core 
would pass through (or close to) 7 control points in the moderate resolution runs and 
11 control points in the high resolution runs. The vorticity distribution is initially 
(chosen to vary linearly with radius from the ring central axis (Le. the z-axis), such that 
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as the elements are convected around the vortex, stretching and compression of the 
vortex lines allow the vorticity to remain constant at any spatial location translating 
with the ring. The spacing of element control points within the ring is roughly three 
times as close near the region where the blade impinges on the vortex ring than away 
from this region. A comparison between the results of the moderate and high 
resolution runs is given in Appendix B. 

A general three-dimensional panel method was used to enforce the no-penetration 
condition on the blade surface. The panel solution was based primarily on a vortex 
sheet method (Hess & Smith 1967). where the integrals over the panels are evaluated 
analytically. Additional source panels were also employed since, when used alone, 
discretization errors in the vortex sheet method can lead to small errors in satisfaction 
of the no-penetration condition at the panel control points. As demonstrated by 
Uhlman & Grant (1993), the source sheet strength approaches zero as the number of 
panels increases. The Kutta condition at the trailing edge of the blade was maintained 
by the flow symmetry. 

Time advancement of the system was performed using the second-order predic- 
tor-corrector method given in (160, h) with a time step of 0.005. The calculations 
were run for 70 time steps and were stopped at time t = 0.35, at which point the blade 
has completely penetrated through the ambient position of the vortex core. For the 
moderate resolution cases, runs were performed in which the time step was allowed to 
vary during the calculations between about 0.002 and 0.0001, with no noticeable 
difference in the computed results. 

One advantage of Lagrangian vorticity-based methods is that it is relatively easy to 
make the calculations self-adaptive. For instance, in the current calculations the radius 
of the vorticity elements was fit adaptively, by searching for nearest neighbours in three 
directions about each element, in order to ensure an overlap value of at least two. The 
nominal initial element radius size was 0.04 for the moderate resolution cases and 0.03 
for the high resolution cases. The element radius decreased for control points that 
approached the blade surface to about 0.03-0.025 for the moderate resolution cases 
and about 0.015 0.008 for the high resolution cases. 

In an inviscid flow with sufficiently large vortex ring radius R and blade chord and 
span lengths, and with no vortex axial flow or blade angle of attack, the normal 
blade -vortex interaction is controlled by the two dimensionless parameters T/n,, and 
r/27ca0 U. As shown in Marshall & Yalamanchili (1994), for values of T/cr, much 
greater than unity the vortex bends about the blade leading edge without penetration 
of the blade into the vortex core. In the present computations, the value of Tjcr, is fixed 
at 1.6, which is sufficiently large for resolution of the vortex response to the blade while 
still in the regime that the blade penetrates the vortex core. Computations are performed 
for three values of the parameter r/27ca,U: 0.32. 0.79 and 1.6. These values 
correspond to cases where the maximum vortex circumferential velocity is smaller 
than, on the same order as and somewhat greater than the uniform flow speed, 
respectively. All numerical results reported here were performed taking .4,, = 0 in 
(1 7) ,  which helps speed up the iteration used to fit the element amplitudes. The run with 
r/27ca,, U = 1.6 was repeated allowing A, ,  to be non-zero with nearly identical results. 

Several previous studies of sound generation by normal BVI, including Howe (1989) 
and Amiet et a/. (1990), have made use of rapid distortion theory (RDT) to simplify 
calculation of the vorticity deformation, sometimes in concert with other approxi- 
mations. In RDT, the vorticity is not allowed to deform under the full velocity field, 
but is instead assumed to evolve with only the velocity field of the ambient potential 
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flow u = UV$ past the blade. In order for RDT to be valid, it is necessary for the timc- 
scale t ,  % T / U  associated with deformation of the vorticity by the ambient potential 
flow to be small compared to the convection time t ,  = 27ca31' of the vortex-induced 
motion. This condition implies that the parameter t = t,/t, z (T/a,)(T/2ncr0 U )  4 1 .  
One goal of the calculations reported in this paper is to assess the use of RDT for the 
normal BVI problem by comparison with results of the full inviscid calculations with 
different values of 6. The three cases considered in the paper, with T/a ,  = 1.6 and 
r/2nUa,, = 0.32, 0.79 and 1.6, correspond to c: values of 0.5, 1.3 and 2.5, respectively. 

5. Results for the deformation of the vorticity field during normal BVI 
In order to evaluate the ability of the numerical method to resolve the vorticity 

deformation throughout the blade penetration process, thc vortex circulation is 
calculated over a cross-section of the vortex core in the planc y = 0, which coincides 
with the plane occupied by the blade chord. The circulation calculation is performed 
using two different methods. In the first, the vortex-induced velocity tangent to a circuit 
surrounding the core, with a radius of three times the core radius, is integrated over the 
circuit to yield the circulation. In the second method, the vorticity is interpolated using 
the representation (6) onto a uniform grid on the plane y = 0, with 151 grid points on 
each side spanning the interval (-0.5, 0.05) in .u and (-0.4, 0.4) in z, and the 
component of vorticity normal to this plane is integrated over area to obtain the 
circulation. A plot showing the results for these two methods of circulation 
measurement is given in figure 6 for high resolution runs with the three values of r 
considered in the paper. In this figure, square symbols denote results using the first 
method for circulation measurement and circular symbols denote results using the 
second method. The dashed lines correspond to the nominal values of circulation 
prescribed in the initial plane for the three cases. For all times shown, except for the 
last time considered for the case r = 1, the circulation obtained by either of these 
methods differs from the initial circulation by no more than 10%. In the last point 
shown in figure 6 for the case r = 1, the circulation obtained by the second method is 

FIGURE 6. Plot of the variation with time of the computed values of circulation in thc y = 0 plane as 
the vortex is penetrated by the blade for the three nominal circulation values considercd (shown by 
a dashed line). Points denoted by squares are computed using integration of velocity over a contour 
about the vortex core and points denoted by circles are computed by integration of vorticity over the 
cross-sectional area of the core. 
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FIGURE 7. Side vicw of the vorticity ficld for the case with r/2m0 U = 1.6. The normalizcd vectors 
indicatc the direction of the vortex vector and the colour shading indicates the vorticity magnitude. 
Plots are drawn at times (a)  t = 0.154, (b) t = 0.232 and ( c )  t = 0.320. 
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FIGURE 8. Plot of average vorticity magnitude of the 30 control points with highest vorlicity 
magiiitudc for cases with strong, moderate and weak vortices, with r/2nr0 U = 1.6 (dashcd curve), 
0.79 (dashed-dotted curve) and 0.32 (solid curve), in comparison to RDT results (circles). The RDT 
rcsults are the same for all values of r/2nu,, U. 

37% larger than the initial value, whereas that obtained by the first method is about 
10% larger than the initial value. This point occurs at a time when the penetration of 
the blade through the ambient position of the vortex core is 87% complete. The 
differences between the two measures of circulation at this point could be indicative 
either of inadequacy of the resolution (6) during the later stages of the penetration (as 
will be discussed further presently) or of significant non-zero values of the vorticity 
divergence. 

It is found for all three values of r/27cUgo considered that the vortex core exhibits 
relatively little response as it approaches the blade, aside from a slight flattening of the 
core, until the point where the blade leading edge actually begins to penetrate into the 
vortex core. If the vortex were to be convected with the uniform flow speed alone, the 
blade would begin penetrating the vortex at a dimensionless time of t = 0.15 and 
penetrate entirely through the vortex by t = 0.35. Plots showing the vorticity field 
for the case r/2ncq0 U = 1.6 for a moderate resolution run at dimensionless times 
t = 0.154.0.232 and 0.320 are given in figures 7(a)-7(c), respectively, using normalized 
arrows to indicate the direction of the vorticity vector and colour shading to indicate 
the vorticity magnitude. As would be expected from Helmholtz's observation that 
vortex lines and material lines coincide for an inviscid fluid, the computed vortex lines 
deform about the blade leading edge but are not cut by the blade. The highest vorticity 
magnitudes are observed to occur very close to the blade surface and to form a 'ribbon' 
of vorticity about the surface as the vortex is convected past the blade. 

The average vorticity magnitude, w,,~,~, ,  of the 30 control points with the highest 
vorticity magnitudes, divided by the initial maximum vorticity magnitude wznZt, is 
plotted in figure 8 versus time for all three values of the parameter I'/2na,, 0' with the 
high resolution runs. The time interval shown corresponds lo that over which the 
vortex penetration occurs. The selection of 30 control points over which to average 
vorticity magnitude was found to give values fairly close to the peak vorticity values, 
while being somewhat smoother than averages with a smaller number of points. 
Results for the full inviscid calculations are shown by solid, dashed-dotted, and dashed 
curves for cases with r/27cUrro = 0.32, 0.79 and 1.6, respectively. The results for 
w,,,/qnit obtaincd from the three RDT calculations were identical, since the vorticity 
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was deformed only by the ambient potential flow. The RDT results are shown in figure 
8 by circular symbols. The values of w ~ ~ ~ / o , , , ~  shown in figure 8 for the two full inviscid 
calculations with circulation of r = 0.2 and 0.5 are very close for the RDT results. In 
the case with 1’ = 1, the value of this ratio deviates from that for the RDT calculation 
at a time of about 0.3 1, after about 80 O h  of the blade penetration is complete. The 
deviation of o,,,/w,,,~ for the strong vortex case from that obtained for weaker 
vortices could be caused by stretching of the vorticity by interaction with its image in 
the blade, which would not be as prevalent for cases with weaker vortices, or by the 
numerical difficulties encountered at the end of this run, as noted in the discussion of 
figure 6. 

As the blade penetrates into the vortex core, the vorticity in the region near the blade 
leading edge is stretched about the blade and should increase at nearly an exponential 
rate. By contrast, the maximum vorticity values in figure 8 show a flattening off at a 
time of about 0.30 (after about 75 % of the penetration is complete) for the RDT cases 
and for the full inviscid calculations with the two lower values of circulation. The 
maximum value that the vorticity can attain is limited by the resolution (i.e. the control 
point spacing) in a region very close to the blade leading edge. In the moderate 
resolution runs, the maximum vorticity values were found to level off somewhat earlier, 
as might be expected, after a time of about 0.26 (see Appendix B). 

There are two shortcomings of existing vortex blob methods for computation of 
flows about immersed bodies, the resolution of which is a topic for additional research. 
The first of these has to do with the fact that even though the control points do not 
enter into the interior of the body, the vortex blob representation (6) used to obtain the 
velocity field nevertheless carries vorticity into the body interior owing to the finite size 
of the vorticity elements. The minimum radius of the elements is set by the restriction 
that sufficient element overlap be maintained tangent to the body surface. and the 
vorticity ribbon which wraps about the body surface can become no thinner than this 
minimum element radius. The extent of vorticity overhang into the blade interior in the 
prcsent calculations is evidenced in the contour plot in figure 9 for the case with r = 1 
at time t = 0.25. The contour plot was obtained by interpolating the vorticity field, 
using the representation (6), onto a regular grid on the plane y = 0. The grid used is 
the same as that described previously for the circulation calculations in figure 6. The 
presence of a ‘ribbon’ of high vorticity near the blade leading edge (indicated by a 
dashed line) is apparent in figure 9. It is noteworthy, however, that the vorticity is not 
distributed evenly in the spanwise direction, but instead has larger magnitude close to 
the region where the vortex circulation carries the vorticity into the blade surface (on 
the bottom part of the vortex in figure 9). In the present calculations, the effect of 
vorticity overhang into the body interior is partially countered by evaluating the 
surface velocity at a small distance (0.01) inside the body. A more long-range solution 
(towards which we are presently working) would be the development of anisotropic 
elements for vortex blob methods, for which the element aspect ratio and radius could 
be fit independently to both maintain sufficient overlap tangent to the body and reduce 
the vorticity overhang into the body interior to a negligible amount. 

A second shortcoming of existing three-dimensional vortex methods has to do with 
the fact that the velocity field possesses singularities at the lines joining the vorticity 
panels on the body. These singularities can potentially lead to anomalous values of 
vortex stretching at control points coming very close to the panel edges. While panel 
edge singularities do not seem to have any significant effect on the computations shown 
in this paper, they can lead to difficulties for very high resolution runs with small values 
of the time step unless an effort is made to keep the points sufficiently far away from 



Penetration of a blade into a cortex core 99 

0.2 

0.1 

z 0  

Vorticity magnitude 

-0.1 

-0.2 
0.2 -0 1 0 

X 

FIGURE. 9. Contour plot of the vorticity magnitude on the plane = 0 for the case T / ~ K ( J ~  U = 1.6 at 
time t = 0.25. obtained by interpolating the vorticity onto a uniform grid using the representation (6). 
The dashed line indicates the position of the blade leading edge. 

the panel edges. In such cases, the maximum vorticity values are observed to become 
very noisy and the computation quickly breaks down. l h e  only long-range solution to 
this problem is to develop panels that can be joined without edge singularities. 

A variety of diagnostic tests given in this section strongly support our contention 
that the blade penetration into the vortex core is accurately computed by our method 
during the first 75 80% of the penetration process (for the high resolution run). It is 
to be expected that any numerical method will break down at some point during the 
penetration, since the thickness of the vortex ribbon near the blade leading edge 
approaches zero exponentially at large time. In the present high resolution calculations, 
the results indicate that this breakdown in resolution occurs just after t = 0.30. This 
resolution limitation results in an artificial thickening of the vorticity ribbon which 
wraps about the blade surface, but the circulation of the vortex core near the blade 
leading edge is fairly well conserved. While we cannot at this time determine the exact 
effect of the vortex ribbon thickening during the last 20-25% of the penetration 
process on calculation of blade surface pressure and unsteady force, runs with different 
numbers of control points and different minimum element radii suggest that the effect 
i s  small (e.g. see the C,  results in Appendix B). 



100 J.  S. Marshall and J.  R .  Grant 

6. Unsteady blade surface pressure 
In this section, results for the computed unsteady blade surface pressure during 

normal BVI are given. Since the blade surface is immersed in a non-zero vorticity field 
during penetration of the blade into the vortex core, the simple unsteady Bernoulli 
equation does not apply. We instead base our pressure calculations on an integral 
equation formation of the pressure-Poisson equation, which results in a Fredholm 
equation of the second kind for the pressure. Following Uhlman (1992), this equation 
for pressure is derived directly from Green's third identity, which gives the value of any 
scalar function { at a point x on the surface S of an immersed body as 

where a/& = n .  V, n is the outward unit normal of the surface S (pointing into the 
volume Voccupied by the fluid) and, as before, r = ( x - X I ( .  The Cauchy principal value 
of the integrals evaluated over S is implied. Although the function { may also depend 
on time t ,  time dependence is not explicitly indicated in this section. 

A function B is defined by 

where the constants p~ and U ,  are the constant pressure and velocity at infinity. The 
Euler equation can be written in terms of B as 

(21) 
?I U 
- + V B - U X W = O .  
c?t 

Taking the divergence of (21) and the scalar product of (21) with n gives expressions 
for V B  and c?B/c7n in an incompressible fluid as 

(22) 
au 

- - n . - + n - ( u  x 0). 
2B 
?n at 

V 2 B  = V . ( u  x a), - - 

If we now replace the arbitrary function { in (19) with B and use (22), a non- 
homogeneous integral equation for B is obtained of the form 

Assuming that the body is either fixed or moving steadily, the right-hand side of (23) 
can be reduced to a single term to obtain a Fredholm integral equation of the second 
kind for B as 

The vorticity in the region V occupied by the fluid is contained both in the interior 
of Y and in the vortex sheet on the surface S of V. Letting the volume integral on the 
right-hand side of (24) be denoted by the variable J ,  the contribution Jszcr f  due to the 
vortex sheet on the surface S can be written (for a stationary body) in terms of the 
magnitude y of the vortex sheet strength as 
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FIGURE 10. Contour plot of the pressure change on the blade surface due to thc vortex for a case with 
r /2rcm0 C7 = 1.6 and at time t = 0.264. Only one in four of the vorticity control point positions are 
shown to indicate the position of the vortex. 

where again the Cauchy principal value of the integral is implied. Substituting (25) into 
(24) gives an integral equation for the quantity B 2 + ( y 2 / 2 )  as 

where J n t  denotes the part of J due to vorticity in the interior of V. For a flow which 
is everywhere irrotational (except on S ) ,  JTLf would vanish and (26) would admit the 
solution B + ( y 2 / 2 )  = 0, which is equivalent to the Bernoulli equation for steady 
irrotational flow. 

To obtain an expression for Jn t ,  we employ the algorithm described in $2  for 
integration of a field defined on a set of irregularly spaced points. A representation for 
u x o is introduced in terms of overlapping Gaussian elements, similar to that for q in 

(27) 

whereJ, is the same weighting function and x, the same element control points as in 
(6). The vectors C,, can be fit to the values of u x CD at the element control points using 
an iterative relationship similar to (17). Subslituting (27) into the volume integral and 
performing the integration for weighting functions of the forin (8) gives 

(61, as I 

u x 0 = C c n ( t ) f , ( x  - x n >  Rn(t)), 
1 1 = l  

where P(. , .) is again the incomplete gamma function. 
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FICXJIW 11. Plot of variation of the minimum value of the blade surface pressure coefficient CI, , , l ln  with 
time for C ~ S C S  with strong, moderate and weak vortices, i-/27mo t’= 1.6 (dashed curve), 0.79 
(dashed-dotted curve) arid 0.32 (solid curve), in comparison to RDT results, denoted by circlcs: 
triangles and squares, respectively. 

A contour plot of the change in blade surface pressure from its value without the 
vortex present is given in figure 10 for a moderate resolution run with r/27ca0 U = 1.6. 
The plot is at t = 0.264, at which time the vortex penetration is roughly half completed, 
and shows the vorticity vector only at every fourth control point in order to indicate 
the general location of the vortex. The pressure signature on thc blade surface is 
dominated by a ‘V’ of low pressure, in the centre of which (at the blade leading edge) 
there is a patch of high pressure. The low-pressure patches on the top and bottom of 
the blade are due to the low pressure within the vortex core, and the low- and high- 
pressure regions along the blade leading edge are caused by the induced velocity from 
the vortex as it impinges on the blade. The ‘waviness’ of the element arrows at the top 
and bottom of the ring is an optical effect due to looking along the core axis (such 
waviness is not apparent in the side view in figure 7b). 

The pressure signature for the weak vortex case appears similar to that shown in 
figure 10, except that high-pressure regions are also found on the top and bottom of 
the blade on the opposite side (i.e. for opposite values of z )  of that on which the low- 
pressure regions occur. The general appearance of the pressure signature for weak 
vortices is that of two interlocking ‘V’s of high and low pressure. 

A plot of time variation of the pressure coefficient Cp,min associated with the 
minimum surface pressure on the blade, defined by 

is given in figure 1 1  for the high resolution calculatioris with three different values of 
ring circulation. Results of the full inviscid calculations are shown by continuous 
curves and results for RDT calculations are shown by symbols. In the implementation 
of RDT in our computations, the vorticity is convected with only the ambient potential 
flow but the full velocity is used for evaluation of pressure. It is found that if onIy the 
ambient potential flow is used in the pressure calculation, the computed unsteady drag 
force on the blade is much too small. In an analytical study using RDT together with 
the thin-airfoil approximation, Howe (1989) also found that spanwise velocity 
components, induced by the vortex and its image over the blade surface, play an 
important role in determination of the unsteady blade force. 
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The results of the full inviscid computations for the lower two circulation values 
compare closely with the RDT runs, but the results for the highest circulation value 
oscillate about the RDT results. The pressure field for runs with strong vortices is 
dominated by the vortex-induced velocity and would therefore be expected to vary 
approximately in proportion to r2. For much weaker vortices, the pressure field is 
influenced more by the perturbation which the vortex causes to the ambient velocity 
field, and would therefore vary approximately in proportion to UT. Since the three 
cases plotted in figure 11 include vortices ranging from fairly weak to fairly strong, the 
minimum pressure coefficient (as defined by (29)) is lower for cases with stronger 
vortices. 

7. Implications for modelling of unsteady blade forces 
The unsteady force (drag) on the blade is calculated by integration of the change in 

pressure (in comparison to the ambient pressure) times the inward unit normal over the 
surface of the body. The computational results for vortex-induced drag D on the blade 
are plotted in figure 12 for high resolution runs in terms of the drag coefficicnt C,, 
defined by 

The computed results for C ,  from the RDT calculations are found to be identical (to 
within plotting accuracy) for all three values of circulation considered, even though the 
pressure results shown in figure 11 are quite different. Furthermore, the results of the 
full inviscid calculations are found to coincide very closely with the RDT results for 
t < 0.29 for all three circulation values considered. For t > 0.29, the full inviscid 
calculations for the cases with r = 0.5 and 1.0 (corresponding to E = 0.79 and I .6, 
respectively) give somewhat larger values for C ,  than predicted by RDT. Since both 
the maximum vorticity values and the minimum pressure values for the case with r = 

0.5 agree closely with the RDT results during this time period (as shown in figure 8 and 
1 I), it seems unlikely that the observed differences in drag coefficient for this case are 
due to numerical resolution dificulties (which would tend to have most effect on points 
with largest vorticity values in the ribbon about the blade surface). These differences 
in C:, with the RDT predictions seem to arise from breakdown of the RDT assumption 
as the parameter c approaches and exceeds unity, resulting in differences in large-scale 
deformation of the vortex between the RDT and full inviscid calculations. 

The variation of blade penetration force with r2, which is evident from figure 12 
during the first 70-75 YO of the penetration process, can be explained by recalling the 
identity obtained by Howe (1989, equation (A 4)), which gives the drag force due to an 
inviscid vorticity field external to a stationary body, with constant uniform flow at 
infinity, by the integral 

D = Ps,, 04. (a x U,,,t) dr. (3 1) 

Here q5 is the velocity potential due to a uniform potential flow (with unity flow speed 
at infinity) past the body and u, or+ is the velocity induced by the vortex and its image. 
If the deformation of the vorticity field were due primarily to the ambient potential 
flow past the body, as assumed in RDT, then both u) and urort would be proportional 
to T, so that D would be proportional to r" and (31) would yield the result that the 
value of C, is independent of r (as our computed results with RDT show). On the 
other hand, if the vortex were sufficiently strong that the vortex-induced or image 
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FIGURE 12. Plot of variation of the drag coefficient C, with time for cases with strong, moderate and 
weak vortices, I ' /~xcT ,  L' = 1.6 (dashed curve), 0.79 (dashed-dotted curve) and 0.32 (solid curve), in 
comparison with RDT results (circles). The RDT results are the same for all values of r/27ca, U. 

velocity contributed significantly to deformation of the vorticity field, then the vortex 
stretching term in (1) would exhibit terms which are both linear and quadratic in r, and 
(31) would indicate that the drag will no longer be proportional to P. 

It may be of interest at this point to compare the magnitude of the blade penetration 
force with that of other forces present in typical normal BVI applications. For instance, 
in most practical applications where a vortex is cut by a blade, there is some non-zero 
ambient axial flow within the vortex which leads to a difference in vortex core radius 
across the blade surface after cutting (as noted in several of the experimental studies 
cited in Q 1). This difference in core radius over the blade surface leads to a normal force 
F on the blade, derived in Marshall (1994), with magnitude 

(32) 
pr2 

F M ~ l n  (n+/v-), 

where CT+ and v- are the vortex core radii above and below the blade, respectively. For 
sufficiently large axial flow (on the order of the vortex swirl velocity), equation (35) of 
Marshall (1994) can be used to approximate the logarithmic term in (32), giving the 
peak unsteady force magnitude due to the axial flow as 

4n 

Assuming a value of axial flow speed of about one-third of the maximum vortex swirl 
velocity (which is typical for certain rotocraft applications), the expression (33) gives 
unsteady force predictions which are of the same order of magnitude as the peak values 
shown in figure 12. For cases with very small values of T/go,  the force due to vortex 
axial velocity would dominate the blade penetration force. 

For non-zero angles of attack a, the normal BVI force is calculated in Marshall & 
Yalamanchili (1994) prior to impact of the blade on the vortex using a vortex filament 
model. This force is found to increase with increasing values of a and T/cr,,. For 
instance, in figure 10 of Marshall & Yalamanchili (which is for a case with T/vo  = 5 
and attack angles of a = 0" and ls"), the peak drag coefficients are found to be about 
C, = 0.3 and 0.5, respectively. In comparison, if we assume that the blade penetration 
force increases in proportion to the ratio T/u0 (for sufficiently small values of this 
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ratio) and vanishes for T / r 0  = 0 (both of which are consistent with the result in 
equation (3.20) of Howe 1989), the peak value from figure 12 can be extrapolated for 
a case with T/un = 5 to give a peak value of C, = 0.5. Thus for T/uo = O(1). the blade 
penetration force makes a significant contribution to the total vortex-induced force on 
the blade in most practical situations. 

8. Conclusions 
In this paper, a Lagrangian vorticity-based computational method is described and 

applied to the problem of penetration of a blade into a vortex core. The computational 
method is based on a collocation solution of the vorticity transport equation over a set 
of convected control points. A representation of the vorticity field in terms of 
overlapping elements, with one element centred at each control point, is used to obtain 
the velocity field at any point in the flow once the element amplitudes are known. The 
element amplitudes are in turn obtained from the vorticity at the N element control 
points by an iterative solution of an N x  N matrix equation. The computational 
method was found to perform very well in a variety of test calculations. 

Simulations using this computational method for the problem of penetration of a 
blade into a vortex core in an inviscid fluid indicate that the vorticity field agglomerates 
into a thin vortex ‘ribbon’ near the blade leading edge. The computational method 
performed well in maintaining connectedness of the vortex lines and conserving vortex 
circulation provided that a sufficient number of control points are used. Some 
difficulties were encountered owing to limitations of the computations in resolving the 
very thin vortex ribbon on the blade surface during the last 20-25 % of the penetration 
process. 

The blade surface pressure is obtained by solution of a Fredholm integral equation 
of the second kind over the blade surface. The vortex exerts a suction force on the blade 
which is found to vary in proportion to the square of the vortex circulation. The 
computed results for unsteady blade force are found to compare well with the results 
of an approximate computation using rapid distortion theory, which supports use of 
this approximation in previous analyses of sound generation in normal BVI by Amiet 
et af .  (1990), Simonich, Amiet & Schlinker (1990) and Howe (1989). The resulting 
values of unsteady force due to blade penetration into the vortex core are found to be 
of a similar order of magnitude to other forces in typical normal BVI problems for 
cases with T/a ,  = O(1). 

The research reported in this paper suggests the need for additional research on a 
variety of topics. The use of three-dimensional vortex methods for flow past immersed 
bodies would be greatly facilitated by development of smooth anisotropic vorticity 
elements and vorticity panels on the body surface which can be joined without edge 
singularities. Further research is also required for the problem of normal blade-vortex 
interaction to clarify the final stages of the penetration process, as well as a variety of 
problems related to the role of viscosity (such as decay of the vortex ribbon and joining 
of the vortex lines in the vortex to those in the blade boundary layer). 
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Appendix A. Analytical solution for vortex ring-sphere problem 
This Appendix gives the derivation of the analytical solution for interaction between 

a vortex ring and a sphere, which is used in $3 to compare with the results of the 
Lagrangian vorticity computations. We recall the standard solution for the 
streamfunction 3 ,  due to an isolated vortex ring of circulation I-, 

where p and z are the radial and axial coordinates of a cylindrical polar coordinate 
system, R is the ring radius and K(k)  and E(k) are the complete elliptic integrals of the 
first and second kinds. For a ring with centre located at (p, z )  = (0, zJ, the constant k 
is given by 

4 Rp k' = ~ 

(z - zo)2 + (R + p y  

A sphere of radius a can be introduced at the origin 0 of the (p ,  z) coordinate system 
with use of Butler's (1 953) sphere theorem for axisymmetric flows, which gives the 
streamfunction ~ for the sphere-ring problem as 

where spherical coordinates ( r ,  0) are related to the polar 

The velocity components 

Substituting (A I )  and (A 
Y = a, go becomes 

p = rsin8, z = rcost?. 

u,. and u0 are given by 

coordinates (p, z )  by 

(A 4) 

2) into (A 3) and evaluating the result on the sphere surface 

where derivatives of the elliptic integrals are given by (Gradshteyn & Ryzhik 1980, 
p. 907) 

dK(k) - E(k)  K(k)  dE(k) - E(k)-K(k)  
- ~ _ _ _ - _ _  ~ 

dk kkI2 k ' dk k 

and k' = (1 -k2)'/'. The derivative dk/dr in (A 6) can be obtained simply by 
substituting (A 4) into (A 2) and differentiating with respect to r. The elliptic integrals 
in (A 6 )  were computed using the algorithm provided by Press et al. (1992). 
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FIGLRE 13. Plots comparing values of (a)  the ratio w , , . , / o ~ ~ ~ ~  and (b) the drag coefficient C ,  obtained 
from KDT calculations with moderate resolution (dashed line) and high resolution (solid line) runs. 
The high resolution results (with 10500 points) were obtained by averaging over the 30 strongest 
points, while the moderate resolution results (with 3500 points) were obtained by averaging over the 
strongest 10 points. 

Appendix B. Comparison of results for moderate and high resolution runs 
The results of RDT calculations performed using moderate and high resolution are 

compared in this Appendix to assess the effect of vorticity resolution on the 
computational results. In making such a comparison, it is important to consider the 
effect of the finite element size on the effective radius of the vortex core. In the 
calculations used for this comparison with both high and moderate resolution runs, the 
maximum element radius was set equal to 0.03 and the outermost control points in the 
core were placed at a distance of 90 YO of the core radius from the centre. The effective 
core radius, calculated based on the maximum vorticity magnitude in the core at the 
initial time step, was found to be 0.113 for the high resolution runs and 0.115 for the 
moderate resolution runs, for a case with a nominal core radius of go = 0.1. The 
circulation of the core was equal to the nominal value 0.500 in both cases to within four 
significant figures at the initial time and was conserved to within 3% during the 
calculations. 

Results of RDT calculations for the high and moderate resolution calculations are 
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shown in figure 13. In figure 13(a), the vorticity ratio wave/oJzntt is plotted during the 
penetration of the blade into the vortex core. To account for the difference in number 
of control points, the maximum vorticity magnitude was obtained by averaging over 
the 30 strongest points for the high resolution runs and averaging over the 10 strongest 
points for the moderate resolution runs. The vorticity ratio results for the two 
calculations are initially close, but moderate resolution results flatten out sooner and 
to a lower value of w,,,/o,,,~ than the high resolution results, as would be expected 
from the discussion in 95. The minimum element radius in the high resolution runs 
reduces from 0.03 to about 0.015 for points near the blade surface during the 
penetration, whereas for the moderate resolution runs the element radius remains at 
0.03 for all elements. The results, both for vorticity magnitude and element radius, 
indicate that the limiting thickness of the high-vorticity ribbon about the blade surface 
for the moderate resolution runs is between about 1.5 to 2 times the thickness for the 
high resolution runs near the end of the penetration process. 

Despite the considerable difference in the resolution of the near-surface vorticity, the 
drag coeficient results for the high and moderate resolution runs, shown in figure 
13(b), are extremely close throughout the entire calculation (with a difference of no 
more than 3 Oh). These data thus support our claim that the thickness of the vorticity 
ribbon about the blade surface has very little effect on the calculation of drag on the 
body. 

Another, less empirical, way of arriving at the same conclusion follows from Howe’s 
identity (31). Since the three vectors 04, o and t ( (o , t  are all co-planar at the blade 
surface, the integrand of (31) will vanish for vorticity on the blade surface. This 
suggests that the high-vorticity ribbon wrapped about the blade surface may have only 
a secondary role in determination of the force on thc body, as originally suggested by 
Howe (1989). Of course, the velocity induced by near-surface vorticity is still important 
when evaluating uvort in (31) at points located farther from the surface (which make the 
most significant contribution to this integral), but these points are sufficiently distant 
from the surface that only the strength (and not the thickness) of the vorticity ribbon 
will be significant in determination of the induced velocity. One advantage of 
Lagrangian vorticity-based methods, as opposed to Eulerian methods using primitive 
variables, is that circulation is approximately conserved even when the flow is not 
particularly well resolved. 
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